
Learning Mechanisms on OWL-S Service
Descriptions for Automated Action Selection

Johannes Fähndrich, Nils Masuch, Lars Borchert, and Sahin Albayrak

DAI-Laboratory of the Technische Universität Berlin
Department of Electrical Engineering and Computer Science

Ernst-Reuter-Platz 7, 10587 Berlin, Germany
johannes.faehndrich@dai-labor.de (Corresponding author)

Abstract. With the increase complexity of IoT systems, the well known
development paradigm for software development like Service Oriented
Architectures and Multi Agent Systems have to be adapted to fit the now
challenges of IoT environments. Here the vast amount of available com-
ponents and the specific implementation for special purpose hardware
calls for an abstraction of functionality as well as to new development
tools which allow to handle the dynamism of IoT applications. Here a
multitude of special purpose sensors with view computational resources
have to be combined to create emerging software. Most of the hardware
reaches an return of investment only offering its service to third party
developers. For a developer to be able to integrate those services into an
application, a adaptive search mechanism need to be developed, which
is able to specialize in the different domains of e.g. IoT applications.

1 Introduction

Distributed systems based on the Service Oriented Architecture (SOA) paradigm
have become more and more popular in recent years due to different trends
like the Internet-of-Things or Big Data. This approach is accompanied by the
planning community that chose planning based upon services as one subject
to research. However, there are some challenges that come up with this vision.
Usually services are not described by one central entity but by different humans,
which—in their domain—have a context dependent view on the described objects
of the world. A first step to cope with this challenge is the usage of one domain
representation that all service developers use for their respective service descrip-
tion. Nevertheless, the way how each developer defines relevant attributes like
input, output, preconditions or effects can be extremely different, which makes
the general interpretation of a service’s functionality difficult. State-of-the-art
approaches therefore integrate service matchmaking components based upon se-
mantic service descriptions, which can be used to find fitting services in each
state of an agent planning algorithm. Therefore service matchmaking can be in-
terpreted as one step planning and can seamlessly be integrated into the action
selection mechanism of an AI planning algorithm in order to find a connection



between the initial state and the goal state within the search space. This ap-
proach has been subject to research and will be surveyed in the next section (see
Section 2).

Usually service matchmaking components do not rely on one single matching
strategy but use different mechanisms to compare a service request with an
advertisement. One question that arises out of that is how to weight each strategy
in order to aggregate them to a single result. The optimal weighting can depend
on several attributes like the application domain, the quality of the ontology,
the completeness of information of the service descriptions and the language
being used for the description. Due to this volatile optimal weighting we propose
to integrate learning mechanisms into the service matchmaking process, which
adapts the weightings to the problem dynamically.

In a prior work [8], we outlined an iterative process that uses a service match-
maker to find matching services in the action selection process of a planning
process. In this paper we describe the implementation and evaluation of the new
matching aggregation process and different learning approaches for defining an
optimal weighting for the semantic service matchmaker SeMa2.

The remainder of the paper is structured as follows. In Section 2 we will
present and discuss the related work. This includes an overview of service de-
scription languages, service matchmakers and service planners. In Section 3 we
introduce the challenges associated with automated service planning and de-
scribe our concept of extending SeMa2 by a comprehensive aggregation pro-
cess. Subsequently, in Section 4 our approach of learning the weights for dif-
ferent matching techniques is presented in detail and evaluated. Eventually, we
conclude the work and give an outlook on future work in Section 5.

2 Related Work

In this section we will at first give an overview about the related work of se-
mantic service matchmakers followed by learning approaches that make service
matchmaking adaptable.

2.1 Service Matchmaker

M. Klusch and P. Kapahnke [15] present a hybrid service matchmaking com-
ponent called iSeM, which performs logical as well as syntactical and structural
matching. iSem participated in the 2012 S3 Contest and was the only match-
maker able to process the provided PE service specifications in SWRL. Besides
logical matching filters for input and output parameters the solution applied a
strict logical specification plug-in matching. This means, that the component
checks whether there exists a transformation of the requested/provided precon-
ditions/effects, in order to infer from a requested precondition to a provided
one and from a provided effect to a requested one. This process is called θ-
subsumption and is in the case of iSem provided without any consideration of



instances. The inferencing is being done after SWRL rules are converted into
PROLOG.

Another work performing PE matching is SPARQLent [19], which not only
performs matchmaking but also planning. It participated in the 2012 S3 OWL-S
Contest and assumes that PE are described in the query language SPARQL.
Hence, the selection process is based on query containment relations not only
considering PE, but also input and output concepts.

In contrast to the other approaches the work of Valle et al. [4] named GLUE
is based on WSML. Since WSML already comes with a conceptual model of
service discovery, this work proposes a refinement that has a specific focus on
mediating goals of different ontologies. The reasoning process itself is performed
with F-Logic.

In the work of Lamparter et.al. [16] the authors present a proprietary service
definition based on OWL-DL. Beside input and output parameters, the algo-
rithm also considers pricing functions described in SWRL and configurations
under which a service is executable. The latter refers to some form of condi-
tion checking, since the requester can search for services that provide a specific,
desired configuration. The reasoning on services is being done with SPARQL
queries.

Bener et al. [2] extend SAM (Semantic Advanced Matchmaker) by PE match-
ing strategies based on OWL-S and SWRL. The matching procedure for con-
ditions is separated into four matching modules, namely subsumption based
scoring, semantic distance scoring, WordNet based scoring, finalized and ag-
gregated via a bipartite matching approach. The work introduces weights for
the aggregation of different matching results, which are shown in Table 1 taken
from [2].

Table 1. Scoring assessments

Relationship Score

Exact 1.0
Plug-in for Preconditions 0.6
Plug-in for Effects 0.4
Subsume for Preconditions 0.4
Subsume for Effects 0.6
Fail 0.0

The weights in this case are fixed and thus not learned. Furthermore, those
weights only concern discrete level of matches.

In conclusion the described approaches rely on different languages for the
description of conditions ranging from decidable ones, such as OWL-DL and
WSML-DL to undecidable ones, such as SWRL, F-Logic and PROLOG. How-
ever, in most of the related work on service matchmakers regarding PE matching
the undecidable rule languages have been limited in its expressiveness in order
to guarantee termination. So far, the service matchmakers have included dif-
ferent similarity measures and have introduced some weights to model their
importance against each other. The weights started out to classify two types



of similarity measures and got more detailed to the point where different parts
of the service description like preconditions and effect are weighted differently.
These approaches have one fact in common: the choice of the weights are fixed
and do not adapt to the context of use.

2.2 Learning Service Matchmaker

In order to optimize the result of the service matching a learning phase can be
introduced to adjust the parameters of a service matchmaker to the properties
of the domain. The parameters to learn depend on the service matchmaker and
thus its flexibility depends on the parameters that can be observed.

In Klusch et al. [14] the authors introduced a formal model of defining weights
for the aggregation of different similarity measures with the names ww−similarity
and ws−structural similarity measure. The aggregation method has been learned
using a Support Vector Machine (SVM) approach based on training data. The
matchmaker component that invokes this approach is designed to match SA-
WSDL services.

M. Klusch and P. Kapahnke [13] introduce another learning service match-
maker by extending the approach of a prior work [11] for OWL-S service de-
scriptions. Here matching results of different matching types are aggregated us-
ing a weighted mean. The authors introduce different types of matching results
that are weighted. Firstly, approximated logical matching, which is divided into
approximated logical plug-in and subsumed-by matching. Secondly, non-logic-
based approximated matching, which are text and structural semantic similarity-
based signature matching. The weights of this aggregation are also learned using
a SVM. This supervised learning approach is replicated in our work, but with a
different learning algorithm. The relevance set that is used to rank the matching
results are reused with a genetic algorithm and a hill-climbing search.

To the best of our knowledge there exist only these both approaches that
utilize machine-learning techniques in order to cope with the challenge of aggre-
gating service matchmaking techniques.

3 SeMa2 and its Expert System

The service matchmaker SeMa2 [17] follows a hybrid approach combining logic-
based and non-logic-based matching techniques using OWL-S and SWRL as
part of a single-agent system. In a subsequent work [8], an extension of SeMa2

was proposed, where each of the matching techniques (in the remainder named
similarity measures) are encapsulated in one agent. The resulting multi-agent
system presents a group of experts, each able to express its opinion about a match
by means of a probability. In the following, we will describe the implementation
of this extension with a selected set of similarity measures. Afterwards we will
present the probabilistic model used to aggregate the different expert opinions.



3.1 The Expert System

In this section we present the extended architecture of SeMa2 and discuss the
relation between different matching experts. An overview of the expert system
is illustrated in Fig. 1.

Fig. 1. Expert structure of the SeMa2 architecture.

The schematic depiction shown in Fig. 1 highlights that lower experts are
used by the upper ones to build opinions. Each node in the figure is an expert
type. Each expert can have multiple instances in the implementation depending
on its use in the hierarchy. The edges of the tree represent weights, which are used
to aggregate the opinion of the lower expert into the upper experts opinion. For
example, the TextSimilarity Expert uses six other experts to establish its opinion.
In total, the SeMa2 consists of 81 experts. We will now have a look at different
excerpts of the experts.

We start with the overall result of the matching process, which is the opin-
ion of the MatchingResult Expert which aggregates the matching results of
the TextSimilarityExpert, the PreRuleStructureMatcherExpert (structural pre-
condition matching), the EffectStructureMatcherExpert (structural effect match-
ing), the IOParamMatcherExpert (structural input/output matching) and the
RuleReasoningMatcherExpert, responsible for validity checks of instances on the
service’s rules. Fig. 1 shows those experts in gray.



The comparison of the arguments of a rule’s predicate presents the next im-
provement opportunity. Here the used algorithm abstracts from the order the
parameters are used but uses a ’is equal’ as comparison. This has the advan-
tage to produce a binary acceptance criteria but lacks the ability to recognize
hypernym or hyponym concepts. The proposed extension here is the use of a
probabilistic measure which is able to distinguish a semantic distance between
the concepts of interest. Such measures are subject of research, e.g. Benner [2]
uses such measures for service matchmaking. Again, we define such measures as
expert opinion and use an information fusion method to aggregate such opinions.

3.2 Scoring and aggregation of matching techniques

There are many different similarity measures to extend the PE matching in a
probabilistic framework similar to the related work (cf. [2, 15]). Some of them
are: Semantic distance based scoring [22] analyzing the embedded ontology of
two concepts to find the shortest path from one concept to another; WordNet
based scoring [2] that can be used to find lexical similarity in used words. If
two concepts out of different ontologies need to be matched a bipartite match-
ing score is able to rate the similarity by i.e. the maximum cardinality match
counting the edges between the different concepts. More sophisticated methods
use ontology matching to find a semantic relation between concepts. Logic based
scoring like proposed in Approximated Logical Matching [15] can be interpreted
as similarity measures using reasoning on formal features of the rules describing
the preconditions and effects.

Those similarity measure each compute a similarity score interpreted as an
probability where 1.0 is a perfect match and 0.0 is no match at all. We now have
a look on how a probabilistic model can formalize such an expert opinion.

Probabilistic model of opinion Like in our previous work [8] we apply the
results of Morris [18] to model the expert opinions as probabilities pi(R,S).
We will have a closer look into this formalization in the following section. As
an expert observes two concepts and elaborates their semantic distance we can
abstract its opinion as pi(Θ|d) where Θ is the subject of interest and d are the
observations. An expert can then collect evidence for its opinion by conducting
multiple observations di. Each observation might then be interpreted as evidence
to strengthen the experts’ opinion. Following Beyerer [3] a Bayesian interpreta-
tion of the conditional probability pi(Θ|d) could be interpreted as a degree of
confidence or even better as a degree of belief. With such an interpretation we
can use this formalism to model the expert opinions as described in the following
equation:

p(Θ|d)︸ ︷︷ ︸
A−Posteriori

=
p(d|Θ)p(Θ)

p(d)
∝
Likelihood−Function︷ ︸︸ ︷

p(d|Θ) p(Θ)︸ ︷︷ ︸
A−Priori

. (1)



Here the subject of interest is Θ, i.e. the equivalence of a Horn-clause. The
observations or information used by the expert to assess its opinion is formal-
ized in d. An example of this d could be the attached ontologies to the concept
in order to calculate the semantic distance. The expert can update its opinion
after observing another d using Bayesian fusion by calculating the product de-
scribed in Eq. 1. If, for example, one concept is a hypernym of the other, p(d|Θ)
could be proportional to the minimal distance between those two concepts [22].
Furthermore, p(Θ) allows the expert to formalize a-priory knowledge about the
probability of Θ.

For the same request and advertisement pair the different measures might
have different similarities. And with that, the experts have different opinions. If
this happens, an aggregation of the different opinions needs to be found.

Opinion aggregation As we have shown elsewhere [8] different aggregation
functions -so called pooling methods- can be used to aggregate the opinions of
experts. The opinions pi(Θ|d) are collected and need to be fused to one score.
Since the experts are not always equally important the possibility to prioritize
by weightings of the different expert opinions is a requirement for the fusion
method. With the probabilistic formalization of the expert opinions method like
the Dempster-Schafer theory of evidence [20], fuzzy logic or artificial neuronal
networks can be used for information fusion [6]. Subsequently to prior work [8]
this work uses a method of opinion aggregation called pooling method formalized
in a function K(p1, . . . , pn)(Θ). It is acquired by adapting a weighted mean to
the aggregation of opinions. We choose a weighted arithmetic mean called linear
opinion pool [21] as our first pooling method. This arithmetic mean has been
generalized by Genest [9] to be able to use weights in the interval [−1, 1] in a
more general class of linear opinion pools (GenLinOP). This opinion pool has
the form of Eq. 2.

K(p1, . . . , pn)(Θ) =

n∑
i=1

wipi(Θ) +

[
1−

n∑
i=1

wi

]
R(Θ) (2)

Here, w1, . . . , wn ∈ [−1, 1] are weights representing the confidence in an expert
and R is an arbitrary probability function, with the restriction:

∀J ⊆ {1, . . . , n} :

∣∣∣∣∣∣
∑
j∈J

wj

∣∣∣∣∣∣ ≤ 1.

The method shown in Eq. 2 has been chosen because of its theoretical sound
standing. Other pooling methods have been and are continued to be evaluated
which is subject to research. The GenLinOP has the possibility to include—
besides the opinion of the group—an a-priori established probability which can

be modeled as R(Θ). We normalize the weights to
∣∣∣∑j∈J wj

∣∣∣ = 1 which lets us

neglect the a-posteriori opinion R(Θ).
The GenLinOP is compared against the Logarithmic opinion pool [10] (Lo-

gOP) and the weighted harmonic mean (HARM) since the GenLinOP has several



theoretic weaknesses [1] like allowing dictatorships. There is a infinite number of
pooling methods where each of which has its own properties which are of con-
cern in different applications. The LogOP for example has the curios behavior
of a ’veto’. Meaning that if a single expert has the opinion of pi(θ) = 0 then the
aggregated opinion is K(p1(θ), ..., pn(θ)) = 0 independent of the given weights.
Eq. 3 describes the LogOP:

K(p1(θ), ..., pn(θ)) =

n∏
i=1

[pi(θ)]
wi

∑
θ∈Θ

n∏
i=1

[pi(θ)]wi

(3)

with weights wi ∈ [0, 1] and
∑n
i=1 wi = 1.

One of the properties which make the LogOP interesting for the opinion
aggregation is that it as what is called the unanimity property which states that
if all experts have the same opinion, the aggregated opinion is equal to this
opinion.

The third aggregation method we will analyze is the weighted harmonic mean.

K(p1(θ), ..., pn(θ)) =

n∑
i=1

wi

n∑
j=1

wj

pj(θ)

∣∣∣∣ wi ∈ [0, 1];

n∑
i=1

wi = 1; pj(θ) 6= 0. (4)

The harmonic mean has the down side of not allowing opinions of 0. Which
leads to the interpretation of the expert opinion that there is no total miss match
at all. Such an postulate is subject to discussion and depends on the domain,
which is model by the experts.

Taking this theoretical framework as a basis, we implement the different
measures used in the service matching as experts returning a probability pi(Θ)
and aggregate them with a pooling method K(p1, . . . , pn)(Θ). For an example
we have adapted the comparison of the arguments of a predicate. The expert
opinion modeled as probability is as follows:

p(Θ) =


dist(ar, as)

−1 , if 1 ≥ dist(ar, as) > 0

1.0 , if ar.getIRI() ≡ as.getIRI()

0 , else

. (5)

This leads us to the question on how to measure the distance between concepts.
This question has been subject to research, e.g. by Euzenat [5]. The next section
gives a short overview of one conceptual metric implemented in our approach as
proof of concept.

In Eq. 5 the first case (dist(ar, as)
−1) defines the distance between the two

concepts in different ways regarding the distance appropriate to the properties
of the concept. Each distance measure is implemented in one expert and we
have e.g. identified Class-Property, Data-Property, Object-Property and Class-
Relationship experts in SeMa2. Class properties are well know and often analyzed



in the related work. The Pellet reasoner supports reasoning on class properties
and as example distance between concepts the Wu-Palmer measure [23] shown
in Eq. 6 has been implemented in one expert.

distWP (ar, as) =
2× ð(4(ar, as))

ð(ar) + ð(as)
. (6)

With ð being the distance to the root element of the tree and 4 is the lowers
common subsumer of the concepts ar and as. Since the for Class-Properties
distWP can be calculated using Pellet but for Object- and Data-Properties Pellet
denies reasoning support so an own implementation has been created.

In a similar manner all other similarity measures are turned into probabilistic
expert opinions. With this change e.g. we are able to distinguish partial argument
matches. We want to emphasize the importance of such a partial match for
planning tasks. Here multiple services can be used to fulfill the arguments of a
predicate in a precondition. Thus on a higher level, we are able to use multiple
services to fulfill the preconditions of a successor task or service.

The matching on arguments is done by a bipartite graph matching solved
with the max flow algorithm, where the edges between request and advertisement
nodes are the opinion of the expert. Fig. 2 shows an example of such an bipartite
graph matching problem.

req

req

adv

adv

adv

s t
3

3

1

1

1

d(req,adv)

Fig. 2. Example of the max flow problem to solve for a bipartite graph matching.

Here the edges exiting the source s have the weight of the sum of the edges
entering the sink t because in this way if one request parameter matchmaker all
advertisement parameters the maximal flow can be seen as perfect match. The
result of the maximal flow though this graph is divided by the sum of the weights
of edges which enter the sink and forms the opinion of the ’MaxFlowExpert’.

One particular challenge is the measure for a class relationship in regards
to a matching tasks. In the related work this is sometimes called subsumes and
subsumed-by relation (cf. [15]). The question at hand here is: If an exact match
of concepts in a ontology is detonated with 1.0 and no match is 0.0 how much is a
sub- or super match? Since all choices done here would be arbitrary, we decided
to let the service matchmaker learn those parameters in an offline stage prior
the actual matching. The grey marked sets (relationship experts) in Fig. 1 are
such experts, where only one expert might return 1.0 and the other converge to
0.0. In this case the weights for these experts denote the influence of an exact-,
super- or sub-match.



The learning is done via a genetic algorithm using the Watchmaker Frame-
work1. Where the weights for the 81 experts is seen as a DNA pattern and are
mutated at each generation. The Mutation and the details of the assessment of
each generation is explained in the next section.

The result of the learning is a weight vector describing the confidence in an
expert regarding its opinion, which are used in the Pooling Methods. Since the
expert structure is not flat some of the experts depend on opinions of other ex-
perts and with that the weights are dependent as well. Furthermore, the learning
takes place on the expert instances and not on a general scope since the same ex-
pert, e.g. the TextSimilarityExpert, can be used to evaluate different properties
of a service description. For example, the name of the service might have more
affect on the service matching result then a text similarity of some parameter.
Thus the weights for those each instances has to be learned separately.

Further it is questionable if the learning of the weights of the pooling method
is significant.

0,8

0,82

0,84

0,86

0,88

0,9

0,92

0,94

0,96

0,98

Iterations

Average	performance	assessment	of	LinOP

Fig. 3. Example weight generations during the learning (X-axis) and their assessment
(Y-axis) of the LinOP.

As shown in figure 3 the different weight vectors yield different results of the
LinOP reaching form 0.8 to 0.95 thus the selection of weights is significant.

4 Learning the Weights

This section will introduce the learning approach for the weights of the aggre-
gation methods and presents the first experimental results. As mentioned above
we used genetic algorithms to optimize the weights of the aggregation methods.

Similar to Klusch [12] the learning is done in an offline phase before the
matching task. Giving the service matchmaker an opportunity to adapt to the
domain it is used in.
1 http://watchmaker.uncommons.org/



Learning algorithm We used the Semantic Web Service Matchmaker Evalu-
ation Environment (SME) 2 for the evaluation. The test collection of services
and request from the S3 Contest3 with 1080 services and 42 requests has been
used. This test collection provides a relevance rating consisting of sets of relevant
and irrelevant services for the 42 requests. This is used to evaluate the matching
performance of the service matchmaker with varying weights. As quality mea-
sure the normalized discounted cumulative gain (NDCG) is used. This quality
measure optimizes the amount of relevant service with high matching values as
shown in Eq 7.

DCG =

n∑
i=1

2reli − 1

log1(i+ 1)

∣∣∣∣NDCG =
DCG

Best DCG
(7)

With these preconditions a supervised learning method has been chosen: Ge-
netic Algorithms. We used the Watchmaker Framework for the support of the
generic algorithm life cycle. The genome is modeled as a list of all 81 weights
each reaching from 0 to 1 with the restrictions among siblings having their
weights normalized to sum up to 1. The first generation is initialized with ran-
dom weights. With each generation the experts with better NDCG values have
thus higher weights, until one round of an N-Fold cross validation is completed.
We have implemented an mutation function, which changes the weight of an
expert depending on the NDCG value he reached. Following this approach the
experts with higher NDCG value have bigger weights in the next generation of
the weight vector. The evaluation has been done with an N-fold cross-validation
with different N reaching from 1 (single fold) over 7 to 42 (leave one out). The
results which are shown in the next section have been taken from the 7-fold-
cross-validation.

Evaluation In this section we unveil the results of the learning phase of the
SeMa2 regarding the different pooling methods. The results have been produced
in three experiments where each experiment has run for approximately one day.
We have to notice that not the absolute height of the weights are subject to
research, since those weights might change with the domain they are learned
in. We rather emphasize that the learning yield different results depending on
the pooling method and further that the quality of the matching result highly
depends on the weights chosen.

The result of the learning process using the HARM as aggregation method
are depicted in Fig. 4: One is the average weights (blue) and the other one is the
weight configuration yielding the best matching results (orange) of an NDCG
0.9195.

To compare our results to the ones of Benner [2] and the ones published by
Klusch and Kapahnke [13] which do weight the first level of similarity measures,
we have highlighted the first level of experts in the weight distributions in Fig. 4,

2 http://projects.semwebcentral.org/projects/sme2/
3 http://www-ags.dfki.uni-sb.de/ klusch/s3/



0,
19
8	  

0,
16
5	  

0,
15
6	  

0,
17
2	  

0,
15
8	  

0,
15
1	  

0,
34
8	  

0,
23
5	  

0,
22
2	  

0,
54
2	  

0,
45
8	  

0,
54
2	  

0,
47
7	  

0,
37
0	  

0,
24
0	  

0,
39
0	  

0,
30
2	  

0,
37
9	  

0,
20
7	  

0,
41
4	  

0,
14
7	  

0,
29
3	  

0,
25
8	  

0,
43
8	  

0,
21
9	  

0,
39
7	  

0,
38
4	  

0,
23
9	  

0,
35
8	  

0,
25
0	  

0,
39
2	  

0,
19
9	  

0,
27
3	  

0,
28
8	  

0,
36
9	  

0,
21
7	  

0,
42
4	  

0,
35
9	  

0,
18
8	  

0,
32
4	  

0,
34
2	  

0,
33
4	  

0,
27
1	  

0,
23
3	  

0,
30
8	  

0,
19
3	  

0,
13
0	  

0,
23
3	  

0,
36
9	   0,
39
8	  

0,
20
8	  

0,
21
2	  

0,
44
7	  

0,
34
1	  

0,
28
2	  

0,
24
5	  

0,
26
5	   0,
30
4	  
0,
35
8	  

0,
22
6	  

0,
41
6	  

0,
31
3	  

0,
46
9	  

0,
27
5	  

0,
25
6	  

0,
23
8	  

0,
18
0	  

0,
26
9	   0,
30
3	   0,
34
3	  

0,
29
0	  

0,
36
7	  

0,
17
4	  

0,
28
6	  

0,
36
6	  

0,
34
8	  

0,
25
8	  

0,
27
9	  

0,
29
0	  

0,
39
4	  

0,
04
5	  

0,0	  

0,1	  

0,2	  

0,3	  

0,4	  

0,5	  

0,6	  

0,7	  

1	   2	   3	   4	   5	   6	   7	   8	   9	   10	  11	  12	  13	  14	  15	  16	  17	  18	  19	  20	  21	  22	  23	  24	  25	  26	  27	  28	  29	  30	  31	  32	  33	  34	  35	  36	  37	  38	  39	  40	  41	  42	  43	  44	  45	  46	  47	  48	  49	  50	  51	  52	  53	  54	  55	  56	  57	  58	  59	  60	  61	  62	  63	  64	  65	  66	  67	  68	  69	  70	  71	  72	  73	  74	  75	  76	  77	  78	  79	  80	  81	  

w
ei
gh
ts
	  

Experts	  

Average	  and	  op3malse	  Harm	  weights	  for	  the	  81	  experts	  

AVG	  

Op2mum	  

Fig. 4. Learned weights for the 81 experts using HARM.

5 and 6 in the order from left to right: Expert 7 being the TextSimilarity Expert,
13 the IOParamMatcher Expert, 47 the PreRuleStructureMatcher Expert and
81 the EffectStructureMatcher Expert. It has to be noted that the hierarchy of
experts has multiple levels and only the first one is emphasized here. Additionally
the weights are not shown as final weights but rather as the assigned weights.
To get the actual influence of the expert to the overall result the weights in the
hierarchy need to be multiplied so that the relevance of the children is weighted
with the relevance of the parent expert. This is not done here since the overall
weights are not of interest since they are domain dependent.

0,
19

5	  
0,
16

2	  
0,
15

1	  
0,
16

8	  
0,
16

3	  
0,
16

1	  
0,
36

9	  
0,
27

7	  
0,
23

3	  
0,
49

1	  
0,
48

3	   0,
51

7	  
0,
57

7	  
0,
25

7	  
0,
25

6	  
0,
48

7	  
0,
27

9	  
0,
33

8	  
0,
33

5	  
0,
32

6	  
0,
18

4	  
0,
28

4	  
0,
25

3	  
0,
42

2	  
0,
33

6	  
0,
32

8	  
0,
33

6	  
0,
24

6	  
0,
32

4	  
0,
34

5	  
0,
33

1	  
0,
22

1	  
0,
23

4	  
0,
29

9	   0,
32

9	  
0,
32

9	  
0,
33

1	  
0,
34

0	  
0,
24

7	  
0,
34

3	  
0,
32

7	  
0,
33

0	  
0,
24

9	  
0,
25

4	  
0,
25

0	  
0,
24

9	  
0,
02

8	  
0,
27

0	  
0,
27

5	  
0,
45

5	  
0,
28

6	  
0,
34

6	  
0,
33

7	  
0,
31

7	  
0,
19

1	  
0,
28

7	  
0,
23

6	  
0,
37

5	  
0,
33

6	  
0,
33

1	  
0,
33

3	  
0,
23

7	  
0,
32

0	  
0,
34

3	  
0,
33

8	  
0,
24

0	  
0,
23

9	   0,
28

4	  
0,
34

3	  
0,
32

3	  
0,
33

8	  
0,
33

9	  
0,
25

2	  
0,
32

9	  
0,
34

1	  
0,
33

0	  
0,
25

0	  
0,
24

8	  
0,
24

9	   0,
28

3	  
0,
02

6	  

0,0	  

0,1	  

0,2	  

0,3	  

0,4	  

0,5	  

0,6	  

0,7	  

1	   2	   3	   4	   5	   6	   7	   8	   9	   10	  11	  12	  13	  14	  15	  16	  17	  18	  19	  20	  21	  22	  23	  24	  25	  26	  27	  28	  29	  30	  31	  32	  33	  34	  35	  36	  37	  38	  39	  40	  41	  42	  43	  44	  45	  46	  47	  48	  49	  50	  51	  52	  53	  54	  55	  56	  57	  58	  59	  60	  61	  62	  63	  64	  65	  66	  67	  68	  69	  70	  71	  72	  73	  74	  75	  76	  77	  78	  79	  80	  81	  

w
ei
gh
ts
	  

Expert	  

Average	  and	  op3mal	  LogOp	  Weight	  of	  the	  81	  Experts	  	  	  

AVG	  

Op2mum	  

Fig. 5. Weighted logarithmic Mean

Secondly the resulting weights of the learning using the LogOP is shown in
Fig. 5. The LogOP has reached a optimum of 0.8932, which is the lowest of the
three aggregation methods analyzed. For the LogOP aggregation the optimal
weights are mostly lower than the average. Since the weights are in the interval
[0, 1] and they are used in an exponent, opinions with small weight convert faster
against 1.0, thus in the product of the weighted opinions the opinion is ignored.



0,
18
4	  

0,
16
2	  

0,
14
9	  

0,
16
9	  

0,
16
9	  

0,
16
8	  

0,
36
0	  

0,
18
6	   0,

24
1	  

0,
57
3	  

0,
49
1	  

0,
50
9	  

0,
53
6	  

0,
15
1	  

0,
16
2	  

0,
68
7	  

0,
30
5	  

0,
31
9	  

0,
34
0	  

0,
34
2	  

0,
06
7	  

0,
30
6	  

0,
32
3	  

0,
60
3	  

0,
32
5	   0,
35
3	  

0,
32
2	  

0,
20
5	  

0,
31
0	   0,

36
5	  

0,
32
6	  

0,
18
2	  

0,
18
9	  

0,
42
5	  

0,
28
7	   0,
32
5	  

0,
32
8	  

0,
34
7	  

0,
25
1	  

0,
34
5	  

0,
32
5	  

0,
33
1	  

0,
25
7	  

0,
24
3	  

0,
24
9	  

0,
11
0	  

0,
08
7	  

0,
24
6	  

0,
27
0	  

0,
48
4	  

0,
28
0	   0,
32
0	  

0,
33
2	  

0,
34
8	  

0,
16
5	  

0,
29
4	  

0,
26
1	  

0,
49
7	  

0,
33
9	  

0,
33
6	  

0,
32
4	  

0,
24
2	  

0,
33
5	  

0,
35
1	  

0,
31
4	  

0,
25
3	  

0,
23
3	   0,
27
2	  

0,
26
8	   0,
30
5	   0,
35
4	  

0,
34
0	  

0,
24
8	  

0,
35
4	  

0,
32
0	  

0,
32
6	  

0,
25
4	  

0,
25
4	  

0,
24
4	  

0,
23
5	  

0,
01
7	  

0,0	  

0,1	  

0,2	  

0,3	  

0,4	  

0,5	  

0,6	  

0,7	  

0,8	  

1	   2	   3	   4	   5	   6	   7	   8	   9	   10	  11	  12	  13	  14	  15	  16	  17	  18	  19	  20	  21	  22	  23	  24	  25	  26	  27	  28	  29	  30	  31	  32	  33	  34	  35	  36	  37	  38	  39	  40	  41	  42	  43	  44	  45	  46	  47	  48	  49	  50	  51	  52	  53	  54	  55	  56	  57	  58	  59	  60	  61	  62	  63	  64	  65	  66	  67	  68	  69	  70	  71	  72	  73	  74	  75	  76	  77	  78	  79	  80	  81	  

w
ei
gh
ts
	  

Experts	  

Op9mal	  and	  average	  Linop	  Weights	  for	  the	  81	  experts	  

AVG	  

Op2mum	  

Fig. 6. Weighted arithmetic Mean

The LinOP, shown in Fig. 6, has reached the highest matching assessment
of 0.9553 of the three aggregation methods. It can be noticed that the LinOP
does tend to the extremes of the weights. This can be seen for instance on
agent number 16 and 21, where in both cases the weights are the smallest and
the biggest one of the three weight sets. Furthermore the normalization of the
weight seams to overcast the result of the learning. Since the sum of the weights
are always normalized to 1.0, experts with many siblings do have smaller weights
than experts with less siblings. The weights for expert number 1 to 6 are a good
example for that, since those are the text similarity experts. It can be noticed
that the weight for the different pooling methods are similar. This is in first place
because of the bias of the normalization and secondly it is because the experts
are weighted due to their performance.

Furthermore all three results of learning the weights seam open to scrutiny
since the weights in average underestimate the optimal solution found for big
weights and overestimate them when looking at small weights. That behavior
is introduced by the the random element in the mutation step of the genetic
learning algorithm. Here in small weights, the probability to draw a bigger weight
during the leaning is high, thus in average the weight should be higher than the
optimal and vice versa with big weights. This can be seen in Fig. 6 with experts
81 and 24.

Overall the weights for the first level of experts can be compared to the result
of Benner [2] or Klusch and Kapahnke [13] but it is not a general proposition
of weights for semantic service matching since for instance only a few of the
services of our test collection have a description of their effect. Thus the weights
for the effect matching are low. In other domains the textual description of the
service for instance might be neglected, which results in an reduction of the text
similarity experts weights.

The logical conclusion is to use an LinOP as an pooling method since it
yielded the best results. But we are further intrigued by the different properties
of the pooling methods and will analyze further aggregation methods in different
domains.



5 Conclusion

We have created an multi-agent expert system realizing a service matcher, where
every expert estimates an similarity measure of a service request to a service ad-
vertisement. This matching process is seen as an action selection step in an agent
planning algorithm. Each expert postulates an opinion concerning the match re-
garding a part of the service description and advertisement. The different expert
opinions are aggregated using pooling methods. The main contribution of this
article is the experimental evaluation of different pooling methods namely the
Linear and Logarithmic Opinion Pool and the Weighted Harmonic Mean. For
this evaluation the weights of the pooling methods are learned using an genetic
algorithm and the result are evaluated using a standard service collection. Re-
garding the overall performance the weighted arithmetic mean seams favorable
for this service collection since it produced the best overall matching result of
an NDCG value of 0.9553.

With this approach an agent might adapt its action selection process to the
domain of use resulting in a performance increase during the planning. The
SeMa2 has been used and extended in an software development methodology in
[7] by using service planning to create service compositions. Selecting one service
to satisfy a query assumes that this given query has been foreseen and a corre-
sponding service has been implemented. Without loss of generality we assume
that this is not always the case, making it necessary to compose multiple services
to fulfill a query. Thus for future work the challenge of utilizing such an service
matcher in an planning algorithm remains. In future work we will integrate this
selection process into the JIAC V agent framework (see: http://www.jiac.de)

References

1. Benediktsson, J.A., Swain, P.H.: Consensus theoretic classification methods. Sys-
tems, Man and Cybernetics, IEEE Transactions on 22(4), 688–704 (1992)

2. Bener, A.B., Ozadali, V., Ilhan, E.S.: Semantic matchmaker with precondition and
effect matching using SWRL 36(5), 9371–9377 (2009)

3. Beyerer, J.: Verfahren zur quantitativen statistischen Bewertung von Zusatzwissen
in der Messtechnik, VDI Fortschritt-Bericht, vol. 8. VDI/Verl. (1999)

4. Della Valle, E., Cerizza, D., Celino, I.: The mediators centric approach to automatic
web service discovery of glue. MEDIATE2005 168, 35–50 (2005)

5. Euzenat, J., Shvaiko, P.: Ontology Matching. Springer-Verlag Berlin Heidelberg
(2007)

6. Fähndrich, J.: Analyse von Verfahren zur Kombination von Expertenwissen in
Form von Wahrscheinlichkeitsverteilungen im Hinblick auf die verteilte lokale
Bayes’sche Fusion. Ph.D. thesis, Karlsruhe Institut of Technology (May 2010)

7. Fähndrich, J., Küster, T., Masuch, N.: Semantic Service Management and Orches-
tration for Adaptive and Evolving Processes. International Journal on Advances
in Internet Technology 9(4), 75–88 (2016)

8. Fähndrich, J., Masuch, N., Yildirim, H., Albayrak, S.: Towards Automated Service
Matchmaking and Planning for Multi-Agent Systems with OWL-S – Approach and
Challenges. In: Service-Oriented Computing – ICSOC 2013 Workshops, pp. 240–
247. Springer International Publishing, Cham (Jan 2014)



9. Genest, C.: Pooling operators with the marginalization property. The Canadian
Journal of Statistics/La Revue Canadienne de Statistique 12(2), 153–163 (1984)

10. Genest, C., Weerahandi, S., Zidek, J.V.: Aggregating opinions through logarithmic
pooling 17(1), 61–70 (Jun 1984)

11. Klusch, M., Fries, B., Sycara, K.: OWLS-MX: A hybrid Semantic Web service
matchmaker for OWL-S services. Web Semantics: Science, Services and Agents on
the World Wide Web 7(2), 121–133 (Apr 2009)

12. Klusch, M., Gerber, A., Schmidt, M.: Semantic web service composition planning
with owls-xplan pp. 55–62 (2005)

13. Klusch, M., Kapahnke, P.: The iSeM matchmaker: A flexible approach for adaptive
hybrid semantic service selection 15, 1–14 (Sep 2012)

14. Klusch, M., Kapahnke, P., Zinnikus, I.: SAWSDL-MX2: A Machine-Learning Ap-
proach for Integrating Semantic Web Service Matchmaking Variants. In: 2009 IEEE
International Conference on Web Services (ICWS). pp. 335–342. IEEE Computer
Society, IEEE (2009)

15. Klusch, M., uster, U.K., Leger, A., Martin, D., Paolucci, M.: 5th International
Semantic Service Selection Contest - Performance Evaluation of Semantic Service
Matchmakers (Nov 2012)

16. Lamparter, S., Ankolekar, A.: Automated selection of configurable web services. 8.
Int. Tagung Wirtschaftsinformatik (2007)

17. Masuch, N., Hirsch, B., Burkhardt, M., Heßler, A., Albayrak, S.: SeMa2: A Hy-
brid Semantic Service Matching Approach. In: Semantic Web Services, pp. 35–47.
Springer Berlin Heidelberg (2012)

18. Morris, P.A.: Combining expert judgments: A Bayesian approach. Management
Science 23(7), 679–693 (1977)

19. Sbodio, M.L.: SPARQLent: A SPARQL Based Intelligent Agent Performing Service
Matchmaking. pp. 83–105. Springer Berlin Heidelberg, Berlin, Heidelberg (Apr
2012), http://link.springer.com/10.1007/978-3-642-28735-0_6

20. Shafer, G.: A mathematical theory of evidence, vol. 1. Princeton university press
(1976)

21. Stone, M.: The opinion pool. The Annals of Mathematical Statistics 32(4), 1339–
1342 (1961)

22. Wu, J., Wu, Z.: Similarity-based web service matchmaking. Services Computing
(2005), http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1531265

23. Wu, Z., Palmer, M.: Verbs Semantics and Lexical Selection. In: Proceedings of the
32Nd Annual Meeting on Association for Computational Linguistics. pp. 133–138.
Association for Computational Linguistics, Stroudsburg, PA, USA (1994)


